If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+2x-18=0
a = 6; b = 2; c = -18;
Δ = b2-4ac
Δ = 22-4·6·(-18)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{109}}{2*6}=\frac{-2-2\sqrt{109}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{109}}{2*6}=\frac{-2+2\sqrt{109}}{12} $
| 3w+21=5(w+1) | | x=12x-77 | | 4y+15=6y–11 | | 5(w+10)=85 | | 24x+8=12x+40 | | 15+8z=7z-8 | | 38+2a=54 | | |2x|+2=6 | | 3-9x=10x+21 | | 4x−8=2x−6 | | 205=7(1+4x)+2 | | 6x+44=12x-8 | | 197=65-u | | 0.08(y-2)+0.06y=0.04y-0.7 | | -6(x-11)=54 | | 11/13=u/9 | | 3-9x=-10x+21 | | -3(x+4)-2x+5=23 | | 4(x+3)-5=14x+8 | | 4(y+2)=40;y=8 | | y²+5y-12y=-3 | | 5x+x2=x2+3x+1 | | -(7-x)+4(-6x-2)=-2x-9 | | 5a+7−3a−4=7 | | -4/11y=-16/38 | | 9x+5=5x+1=90 | | 5(y+8)=-4y+22 | | 6x+44+12x-8=180 | | 2b—1=3 | | 5(2x−4)−11=4+3x | | 2b—1=4 | | x-3(-4x+6)=21 |